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MOTION OF AN ELASTOVISCOUS LIQUID WITHIN A TUBE 

AFTER REMOVAL OF A PRESSURE DIFFERENTIAL 

Z. P. Shul'man, B. M. Khusid, and 
Z. A. Shabunina UDC 532.135 

The nonisothermal flow of a nonlinear hereditary liquid within a ring-shaped channel 
after instantaneous removal of a pressure differential is studied. 

The present study is a continuation of [i], which considered flow development after 
impulsive application of a pressure differential. We will now consider halting of a flow 
upon instantaneous removal of a pressure differential. Analytical solutions of this problem 
for the linear formulation have been presented in [2, 3]. In [4] a numerical calculation of 
flow in a circular tube for a two-constant Oldroyd model was performed. However, until the 
present there has been no study of the effect on rheodynamics of such important factors as 
nonisothermal conditions, the relaxation time spectrum, and the dependence of that spectrum 
and the relaxation moduli on shear velocity. 

As in [I], we will employ a nonlinear integral rheological equation of state (RES): 

t [(  2 t  e (Ct(t ' )--E)] dr'' T = oi' m It - -  t', S D (t')] I @ (C7 -1 (t')  - -  E) -~ -~- 

m =  %,~ ~lh)~__~ fj, (S o (t')) exp -- ~,h" dr" , 

S~, = 2 t r D ;  ~h = ~10/~(r k~; ~.k = )V k~, 1.5 < r  

(1) 

Calculations wereperformed for a liquid the properties of which are independent of the 
deformation rate fh = gh = I, and for three nonlinear models -- the Bird--Carro (BC), Meister 

(M), and Macdonald--Bird--Carro (MBC) (see [i, 5]). The problem is formulated mathematically 
for a tube, the length of which significantly exceeds the extent of the hydrodynamic and 
thermal input segments: 

Ov~ Op 1 0 
P --Ot = ---=--Oz (t) -k --r --Or (rTrz)' R I ~ r ~ R 2 ,  

(2) 
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Vzl,=~, = v 4 = ~ ,  = O, 
Op _ / c o n s t ,  0 ~ t < t*, 

Oz ( O, t > /  t*. 

If the interior and exterior channel surfaces are maintained at constant but differing 
temperatures 02 and 0z, and dissipative heat liberation is low, then the well-known logarith- 
mic temperature distribution will be established across the gap: 

0 - - 0 1  _ l n ( r / R 1 )  (3 )  

02 - -  01 In (R2/R1) 

The nonisothermal flow is descrSbed with the aid of the temperature-time invariance principle 
[6]. Neglecting the temperature-density correction, we may write N=Nsa(0), %=L~a(0), while 
a(0) =exp{(Ea/R)(I/0--1/0s)}. The subscript s refers to the characteristic arithmetic mean 

temperature 0s-----0,5(02+01). The magnitude and sign of the temperature head are determined by 

the parameter v= {01--02)/0s, while the temperature dependence of the viscosity is determined 

by b = R0 /E . 
S a 

Differentiation with respect to time reduces Eq. (i) to an equivalent system of differ- 
ential equations (see [1]). This system is solved numerically using an implicit conserva- 
tive finite-difference technique. 

The parameters of the problem are the following: El=Lq0/ph ~ , elasticity number; ~, 

spectral characteristic; We = ~V/h, Weissenberg number; ~----h/~! -~-(R2-Rt)/RI , relative gap. 

The ranges of e, v, El, We, b are the same as in [i]. 

After removal of a pressure differential, reverse flows develop in the elastoviscous 

liquid. In the same situation an inelastic liquid is braked smoothly, continuing to move 
in the same direction. The presence of elastic properties leads to velocity and tangent 
stress oscillations during halting of the flow. For liquids with constant properties, due 

to the linearity of Eqs. (I), (2), for fk = gk = 1 for t > t* we have Trz(r, t)=T~z(r, l)-- 
Try(r, t--t*), O.(r, l)=v~(r, i)--v~(r, t--t*) Here T H v H is the solution of the problem of 

" rz' z 

flow development for impulsive application of a pressure differential. The volume Of liquid 
which passes through the tube Z(t) over a time t > t* will be given by 

t* 

Z (t) = Z'  (t) - -  Z '  (t - -  t*) = ~ Q (t - -  t* + t ') dt ' .  
0 

Here Q(t) is the volume flow rate and Z' (t) is the liquid volume for pulsed application of a 
p r e s s u r e  g r a d i e n t .  As t § oo t h e  f l o w  r a t e  t e n d s  t o  a s t a t i o n a r y  v a l u e  

Qst = 8no In (R.z/R~) ' 

so that Z(~) = Qst t*. Thus, with both application and removal of a pressure differential, 

identical quantities of linear elastoviscous and Newtonian liquids flow though the channel. 

The effect of the parameters ~ and E1 on flow characteristics is the same as in the 
case of pressure increase, increase in these parameters intensifying the manifestations of 
elastic properties. Figure 1 presents a diagram which relates the relative flow rate Q to 
the dimensionless stress on the exterior cylinder T . Such diagrams were first proposed 

rzz 
in [2] For an elastoviscous liquid the values of Q and T can significantly exceed the 

�9 rz1 

stationary values during development and halting of the flow. For large values of e the 
liquid oscillates more intensely. This is shown by the "curling" of the curve around the 

stationary point. 

For nonlinear models the problems of pressure differential application and removal lose 
their symmetry. The values of the dimensionless pressure removal time t*~/ph 2 will be 
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Fig. i. Q--T diagram for elasto- 
rz1 

viscous (El = i0, 6 = 0oi) at ~ = 2 
(i) and ~ = 3 (2) and Newtonian 

liquids. Line denotes time of pres- 
sure removal and arrow indicates 

direction of time flow. 

assumed fixed. Depending on the values of ~, El, and We, the flow will or will not become 
developed by this time. The further the flow from the stationary state, the more intense 
the reverse flow after removal of ~p/~z. For the elastoviscous liquid, the reversible defor- 

mation can be characterized conveniently by the ratio Qmax(t > t*)/Q(t*), where Q(t*) is the 

flow at moment t*; Qmax(t > t*) is the maximum flow rate of the counterf!ow after removal of 

the pressure gradient. The irreversible component is given by Z(~)/Z (~) -- the volume of 
n 

liquid passed through the tube up to this value for a Newtonian liquid with viscosity ~oo 

After removal of the pressure gradient the tangent stresses across the gap reach their steady 

state values before halting of the flow, i.e., there exists a quasistationary flow stage 

which is realized at zero tangent stress. 

For the BC model the Q - T diagram, as in the case of a liquid with constant properties, 
rzl 

is ~'curled" around a stationary value, However, deviation of the relative velocity from 

stationary values during oscillations in the BC model for given values of ~ and E1 are more 

intense than in the linear model, and the "twisting" is more severe. In Fig. 2 one can easily 
see the quasistationary regions, where stress on the wall is practically constant and flow 

rate increases (for application of pressure) or decreases to zero (for removal of pressure) o 

For the MBC model the flow rate values for app!ic__ation and removal of pressure go through 
two oscillations, with the first the larger. In the Q - T -diagram the second flow rate 

rzl 

oscillation corresponds to formation of "loops" in the curve (Fig. 3). Pressure removal 

appears similar at low We in the M modelo 

Increase in relaxation time and spectrum parameter intensifies the manifestations of 
liquid elastic properties: reversible deformations increase. Thus, for the BC model, the 

ratio Qmax(t > t*)/Q(t*) at We = i0 equals 0~ for E1 = i0, ~ = 2~ 1.49 for E1 = i0~ ~ = 3~ 

3~57 for E1 = i00, ~ = 2,6 = i~ The elastic properties are also manifested more intensely 

for lower pressure gradients~ at 6 = i, ~ = 2, E1 = i0, with change in We from i0 to 1 the 

ratio Qmax(t > t*)/Q(t*) changes from 0.89 to 2.71 for the BC model and from i~28 to 2.78 for 

the MBC modei~ Increase in reversible deformations is accompanied by a decrease in irrever- 

sib!e ones. Thus, at ~ = 2, ~ = i~ El = I0~ We = i0 Z(~)/Zn(~) = 2.44~ 1o28 for BC, and 1.9, 

!o0 for MBC; at We = i0, E1 = i00 Z(~)/Zn(~) = 1.42 for BCo 

The reverse flow during flow termination first appears near the outer wall, the region 
involved being larger, the larger 6. 
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Fig. 2. Q- T diagram for BC model with 6 = i, e = 2, 
rzl 

We = i0:E1 = i0 (i) and E1 = i00 (2). Line indicates time 
of pressure removal, arrow indicates direction of time flow. 

Fig. 3. Relationship between flow rate Q and tangent stress 
on interior cylinder T for MBC model at ~ = i, ~ = 2, We = 

rE I 

i, E1 = i0. Arrow indicates direction of time flow; line, 
time of pressure removal. 

Under nonisothermal conditions, upon application or removal of a pressure gradient, just 
as in the isothermal analog, reversible deformations decrease, and irreversible ones increase 
with increase in pressure gradient and decrease in the parameters ~ and e. However, a num- 
ber of unique features do appear, related to the value of the temperature differential and 
its sign. Nonisothermal conditions level out the quasistationary state upon both application 
and removal of pressure. In the Q --T diagram zones appear corresponding to significant 

rzl 
change in T with only a slight change in flow rate. In the case of a heated exterior 

rzz 

cylinder the stationary T values are approached from above, while with the interior cy- 
rzl 

finder heated they are approached from below. The elastic properties manifest themselves 

somewhat less intensely when the exterior cylinder is heated: ~ < 0. Calculations show that 
for a MBC-model liquid at We = i, E1 = i0, ~ = 2, 6 = 0.i the ratio characterizing reversible 

deformations Qmax(t > t*)/Q(t*) for ~ = -43.25 and 9 = +0.25 is 0.94. Irreversible deforma- 

tions increase: Z(oo)l~=~.25/Z(oo)l~=o.25=l.07 . For isothermal conditions Qmax(t>l*)/Q(t*)~--2,?7, 

while Z(oo)/Zn(oo)--~l.81. The total quantity of fluid passing through the tube after applica- 

tion and removal of the pressure gradient in a constant temperature field is less than under 

isothermal conditions: Z-(oo)/Z0(oo)=0.96; Z+(oo)/Zo(oO)---0.89 . In the initial period after 

pressure removal the reverse flow is more intense near the cold wall. Then for either appli- 
cation or removal of pressure the velocity profiles shift toward the heated cylinder. 

Using the MBC model, we will consider a change in pressure differential which follows 

an exponential law: 

Oz | Op ( / . )  exp [(t* - -  t)/t~], t > t*. 
t Oz 

Pressure removal occurs in the steady-state flow stage t* >> ~, t* >> 9h2/•o. 

limiting situations are possible: for E1 >> 1 

The following 

and for E1 << i 
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4) t~ (( ~ (~ 9h2/no, 5) ~ (( t~ (( ph2/rlo, 6) ~ (( ph2/~lo (( t~. 

In cases i) and 4) the pressure gradient changes over a time significantly less than the 
characteristic flow times. Thus, the liquid behaves as though the pressure were removed 
impulsively. Numerically calculated curves for instantaneous and exponential pressure 
change under these conditions agree completely. In case i) the elastic forces play a 
large role, and the stress and velocity amplitude oscillations are large, while in case 4), 
when ph2/~o >> Z, the liquid behaves as though it is viscous. The same type of flow, close 
to viscous, is characteristic of case 5). The Q- T diagrams for 4) and 5) are similarz 

rz 1 

the removal curve lies above the application curve, curling is almost absent, and upon 
pressure removal there is a "flare" in stress with flow rate remaining practically constant. 

For a very slow change in pressure gradient [cases 3) and 6)] the liquid follows the 
change smoothly. Elastic properties manifest themselves at E1 >> 1 in the preservation of 
characteristic inflections in the flow-rate curve in the initial stage of the flow. These 
are absent at E1 << I. 

In case 2) over the period of the wave stage the pressure differential is practically 
constant. Flow rate and tangent stress increase approximately linearly. Then elasticity 
begins to manifest itself -- flow rate and stress oscillations appear, as well as reverse flow 
in the case of pressure removal. 

An experimental study of elastic reversal was performed in [7] for flow of an aqueous 
solution of carbomethylcellulose in a circular tube. After removal of an impulsively applied 
pressure gradient, liquid moved in the reverse direction, the displacement reaching 20%. In 
the calculations performed above, a value of this order of magnitude was obtained at E1 and 
We numbers of approximately i0, with ~ = 2. 

NOTATION 

r, ~, z, cylindrical coordinates; RI, interior cylinder radius; R2, exterior cylinder 

radius; t, time; Ct(t) , C~1(t), Cauchy and Finger finite deformation tensors; E, unit tensor; 

D, deformation rate tensor; m(t), memory function; ~, model parameter; ~, relaxation time spectrum 

parameter; ~(~), Riemann zeta-function; tr, tensor trace operator; ~k' relaxation time; X, 

maximum relaxation time in spectrum; no, initial viscosity; nk, constants with dimensions of 

viscosity; p, liquid density; ~p/~z, pressure gradient; T, excess stress tensor; 0, tempera- 

ture; Vz, z-component of velocity; V, characteristic velocity; Ea, process activation energy; 

R, universal gas constant; Q = Q/2~R~ V~, dimensionless flow rate. 
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